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FPGAs and microprocessors are more similar than you may think. Here's a primer 

on how to program an FPGA and some reasons why you'd want to. 

Small processors are, by far, the largest selling class of computers and form the basis of 

many embedded systems. The first single-chip microprocessors contained approximately 

10,000 gates of logic and 10,000 bits of memory. Today, field programmable gate arrays 
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(FPGAs) provide single chips approaching 10 million gates of logic and 10 million bits of 

memory. Figure 1 compares one of these microprocessors with an FPGA. 

 

Figure 1: Comparison of first microprocessors to current FPGAs 

Powerful tools exist to program these powerful chips. Unlike microprocessors, not only the 

memory bits, but also the logical gates are under your control as the programmer. This 

article will show the programming process used for FPGA design. 

As an embedded systems programmer, you're aware of the development processes used 

with microprocessors. The development process for FPGAs is similar enough that you'll have 

no problem understanding it but sufficiently different that you'll have to think differently to 

use it well. We'll use the similarities to understand the basics, then discuss the differences 

and how to think about them. 

Similarities 

Table 1 shows the steps involved in designing embedded systems with a microprocessor and 

an FPGA. This side-by-side comparison lets you quickly assess the two processes and see 

how similar they are. 

Table 1: Step-by-step design process for microprocessors and FPGAs 

 

Microprocessor FPGA 

Architectural design Architectural design 

Choice of language 

   (C, JAVA) 

Choice of language   (Verilog, 

VHDL)  



Editing programs Editing programs 

Compiling programs 

   (.DLL, .OBJ) 

Compiling programs 

  Synthesizing programs 

   (.EDIF) 

Linking programs 

   (.EXE) 

Placing and routing programs 

   (.VO, .SDF, .TTF) 

Loading programs to 

ROM 

Loading programs to FPGA 

Debugging P 

programs 

Debugging FPGA programs 

Documenting 

programs 

Documenting programs 

Delivering programs Delivering programs 

Architectural design 

The architectural-design phase is surprisingly similar. Although people will argue design 

philosophies, it's not unusual to perform a "first cut" at programming in a pseudo-language that can 

be translated into and refined as a specific language, say assembly, C++, or JAVA. I describe my 

first FPGA architectural design in a pseudo-C language then translate it to Verilog for an FPGA. 

Thus the ability to express yourself in C is a good start in learning Verilog. Architectural issues could 

fill a book; therefore we'll focus on development issues. 

Because you understand editing, compiling, assembling, linking, and loading in microprocessor 

programming, you can relate this to editing, compiling, synthesizing, placing, routing, and loading in 

FPGA programming. 

Editing  

Not only is Verilog syntax C-like, but, since it's 100% ASCII, you can use any editor to prepare fpga.v 

files. Nothing new here. 

Compiling  

The process of compiling a program for the microprocessor combines the edited files and builds a 

logically correct sequence of bits that are used to control the sequencing of logical gates. These 

gates write data onto buses, into latches and registers, out ports, and across channels. The gates 

have fixed relationships designed to accomplish fixed functions. The assembly-language instructions 

represent these functions. Thus microprocessor compilers either produce assembly-language 



programs that are then assembled into bit patterns or directly produce the bits to drive the gates and 

fill the registers and the memories. 

The analogous operation in FPGA programming is the compilation of Verilog into register transfer 

logic (RTL) netlists. As the name implies, data is transferred into registers, subject to some clocking 

condition. At this stage FPGA programming departs from microprocessor programming in that an 

additional synthesis process is required to produce bits (or intermediate objects that can be 

converted to bits) that will control gates and fill registers and memories on an FPGA. This level is 

called gate-level logic, since it describes the logical gates of which the system will be composed. 

The output format is typically an Electronic Design Interchange Format (EDIF) file. 

There's a large difference between compiling and synthesizing, and you have to stretch some to 

encompass it. Whereas the compiler produces bits to control fixed-gate patterns (the microprocessor 

decoders, registers, arithmetic logic unit, and so on) the synthesizer defines gate patterns described 

by the logic of the program. That is, your program logic gets synthesized, or mapped into, logical 

gates, not into processor instructions that control multigate structures. This is absolutely amazing, 

and good FPGA programmers give thanks every day for living in the rare time in history (post 1990+) 

when you can design architectures with words and then synthesize your logic into (mostly silicon) 

gates that execute your logic. Not to get carried away, but it's absolutely wonderful. 

Linking 

Linking was a latecomer to programming—maybe 1950. Previous computers and programs simply 

put bits into console switches, and thereby into registers. (Read about the development of linking in 

the sidebar.) 

The bit-based outputs of the microprocessor compilation process typically don't directly control gates 

but must be connected to other bit patterns. This is true because most programs run under the 

control of an operating system and must be connected, or linked, to the operating system. In fact, 

the location in memory of the actual compiled bits is usually unknown and not determined until 

linking and loading is completed. Further, there may be programs existing in a library that must also 

be linked to the compiled program before a useful product exists. 

The synthesis process, as we have discussed, produces bit patterns, in an intermediate format. We 

compile Verilog to RTL netlists, then synthesize Verilog to EDIF, then place and route EDIF to 

produce HEX or TTF files that can be loaded into an FPGA. These bit patterns will end up controlling 

logic gates and filling memory and registers. 

In the same way that C and other programs include objects defined in (possibly third-party) libraries, 

FPGA programs can include or import portions of systems from third-party intellectual property, in 

the form of FPGA-implementable programs or objects. 

Also, in the same way that the linking and loading process of embedded systems design connects 

various system objects, subsystems, or super systems like the operating system, including library 

objects (and loads or places them into specific memory locations), the place and route function in 



FPGA design places the synthesized subsystems into FPGA locations and makes connections 

(microprocessor links ~ FPGA routes) between these subsystems, enabling their operation as an 

integrated system. The actual linking and loading of compiled bits is essentially a process of fitting, 

in one dimension, the bit patterns distributed over a set of available linear memory addresses. The 

FPGA place and route process fits, in two dimensions, the bit patterns (logic subsystems) over a two 

dimensional array of available logic gates, and routes buses between these logic subsystems as 

necessary. 

The similarity in the processes is obvious. 

History of Linking 

Early computers had a "patch board" that looked 

somewhat like the telephone patch boards of the 1940s 

where "patch cords" were plugged into "sockets" to 

make connections between various buses and register 

inputs and outputs. The patch boards of the '40s and 

'50s evolved into the bit-slice microprogramming of the 

1970s, where, again, the focus was on control of logical 

gates, and the patch cords were implemented as "wire 

wrap" connections. In FPGAs the patch cords are 

routing connections between gates. Early FPGAs 

contained gates that numbered between the hundreds 

and the thousands. The size was not sufficient to 

implement systems, but was capable of implementing 

the types of circuitry built with Medium Scale Integrated 

Circuits (dozens of gates), which implemented the "glue 

logic" that held microprocessors and sophisticated 

peripheral chips together. Therefore, the first practical 

applications of FPGAs consisted of replacing many glue 

logic chips with one FPGA. Because these circuits were 

already completely described by circuit diagrams, the 

first FPGA editors used graphics capture; that is, the 

circuit diagrams were redrawn in the editor, and this 

was the input information. No high-level languages 

were used to program the FPGA in this process, simply 

graphics editing and time-based simulation of 

waveforms. 

Loading 

Finally, just as embedded programs are often embedded in physical ROM, flash, or downloaded live, 

FPGA programs (compiled, synthesized, placed, and routed) must be embedded in the physical 

FPGAs. The actual programming file may be a .HEX or similar. Programmers typically download or 

burn the bits from these files into the hardware. If nonvolatile, this is a one-time proposition. If not, it's 

a download-at-power-up proposition. Many variations exist with FPGAs as with microprocessor-

based embedded systems, but in the end, in a functioning microprocessor-based product, the bits 

compiled, linked, and loaded must "get into" the physical memory to control the gates of the 



processor, and in an FPGA-based functioning product, the bits compiled, synthesized, placed, and 

routed, must "get into" the FPGA, to implement the gates of the system. 

Debugging programs 

All experienced programmers know that complex programs, even subprograms, don't run correctly 

the first time. When we first see how to solve a problem, we tend to be overjoyed, (it's possible!) and 

then underestimate the time required to implement the solution. This is because our powers of 

abstraction, based on experience, enable us to see solutions without worrying about every nitty-gritty 

detail. But the hard truth is that the physical system in which we're embedding our programs requires 

that every nitty-gritty detail must be handled before it will work. No doubt, you have had the 

experience of fixing a single bit (or flag) that caused a crashing program to suddenly run correctly. 

Hallelujah! It works. I can sleep now. 

Anyway, things don't work right out of the gate. We generally have to kick them and see what they 

do and where they expire. In embedded systems program development, we typically use debuggers, 

simulators, and emulators. These tools enable us to step through the program execution and 

observe the effects on flags, register contents, memory locations, and so on, and to try to match 

what we expect at a given place and time with what we see, in the simulator or emulator. 

Simulation vs. emulation: Debugging in FPGA design is largely based in simulation. You can see 

why. Emulation, in the context of embedded microprocessor programs, typically refers to executing 

programs on special in-circuit emulation (ICE) hardware designed to 1) run exactly like the target 

machine and 2) provide visibility, access, and control of the target machine in powerful ways, with 

emulation timing exactly equal to target timing. Thus, the essence of emulation is based on physical 

hardware that reproduces the microprocessor's gates while adding gates designed for debugging. 

This methodology works because the microprocessor consists of a fixed array of gates, 

implementing the CPU, among others. 

The FPGA does not have a "fixed" pattern of gates, in the sense of the CPU; in fact, the object of the 

FPGA programs is to define a pattern of gates, via the process described herein, that will implement 

our design. And our design will differ from every other design. This is why no FPGA emulators exist, 

in the sense of in-circuit emulators. 

Today the fastest processors cannot be emulated in hardware, since they already run as fast as 

possible, and the ICE circuitry adds additional gate levels, thereby slowing the ICE and preventing it 

from keeping up with the processor. For this reason, processor designs focus on built-in debugging 

support. This approach is somewhat analogous to FPGA design, where it's helpful to build in debug 

aids. Because you're used to building debug aids into programs, from PRINT statements on up, 

you'll understand the significance of this point, and be able to translate your understanding into the 

FPGA realm. 

Most microprocessor programming, particularly embedded programming, is based on the 

assumption that sophisticated operating systems and peripheral devices are "connected to" the 



program, through application interfaces. Thus debugging focuses on the inside of the machine and 

doesn't attempt to simulate the operating system or the peripherals but instead works with them. 

Testbenches in FPGA: Most FPGA systems are standalone systems connected to the real world, 

and functioning in interaction with the real world. Therefore a large part of debugging and test is 

concerned with simulating the real world to which the FPGA will attach. In reference to the way logic 

circuits were debugged historically, this is called thetestbench and is considered an integral whole—

in other words, it can be compiled as a whole. Simulation typically steps through the operation of the 

testbench, which stimulates the FPGA. The simulation process observes the transformations and 

translations of signals as they propagate through the FPGA from the input pins and provides 

responses that eventually reach an output pin. 

Because there will likely be tens or hundreds of thousands of gates, you obviously don't watch all of 

them, but the most meaningful ones in the area of interest. For example, a FIFO buffer may be 48-

bits wide and thousands of words long, but the gate output that most interests you at the moment 

may be the Buffer_Full signal, so this would be displayed on the simulation screen, along with other 

signals of interest. This process somewhat resembles focusing on flags or semaphores in 

microprocessor programming. You can group multiple signals. For example, eight wires may be 

given a name,Data_In_Bus, and the numeric values appearing on the bus may be displayed, as 

opposed to showing all eight lines constantly changing. State variables can be given ASCII names 

and displayed. In the same sense that you may want to focus on program execution within a 

subroutine, you may want to observe only the signal activity in a subsystem. Once you learn the 

tools, it becomes quite natural to debug an FPGA subsystem you've designed. 

Bottom line: FPGA debugging is done by software simulation and by using actual hardware. Any 

debug use of the actual hardware must be designed by you. 

Netlist and Top ~ Main: Although it's not really a part of the process, it's worthwhile to understand 

that the output of the FPGA design process is a netlist or list of nets or wires that connect gate 

outputs to other gate inputs. Further, there is a top level from which everything descends. Think of 

the top as the Main point in a microprocessor program where the program starts. Although there 

may be 50 or more modules that are created independently in an FPGA design, when the process is 

finished, all will be linked in the netlist. Any module not in the list will have no effect. This is 

analogous to a subroutine that is never called. If there is no connection to a module, the module 

can't do anything. 

Documenting programs: 

I can't think of any significant differences between good documentation practice in microprocessor-

based embedded systems and FPGA-based embedded systems programming. The contents will 

obviously differ somewhat, but the practice and procedures are the same. 

Delivering product: 

FPGAs are surprisingly similar to microprocessors in the actual delivery of working hardware and 

software. 



The microprocessor hardware, boards, power supplies, connections, must be correctly designed, 

and the software must be burned in or downloaded as described above. 

The FPGA hardware, boards, power supplies, connections, etc., must be correctly designed, and the 

software must be burnt in or downloaded as described above. 

If the hardware is correct, the software can evolve. This allows bug fixes and feature addition. This is 

true for microprocessors and FPGAs. The Verilog or VHDL hardware description language (HDL)—

each is a high-level design language—provides fast time-to-market using FPGAs. The HDL system 

allows design, debug, and verify—all within the same environment. As with microprocessor design, 

FPGA design can be command-line driven or IDE-based. 

Differences 

Most of what we've just discussed has focused on the similarities between embedded 

microprocessor programming and FPGA programming. We now look at some significant differences. 

Unsynthesizable: 

Probably the biggest surprise for experienced embedded programmers is that programs that are 

functionally good, that run, and can be simulated, and produce correct results, may not be 

synthesizable. What does this mean? It means that you can write "good" functional programs that 

are impossible to convert into a netlist that can be mapped into an FPGA. Why is this? Primarily 

because Verilog is a "superset" of synthesizable syntax. Historically, Verilog was designed as a 

simulation language for simulating logic systems. It was only later that synthesis technology was 

able to actually convert the RTL output of the simulation compiler into netlists based on gate-level 

structures actually found in FPGAs. It is therefore understandable that the full simulation language, 

designed before synthesis tools, is not fully synthesizable. What does this mean to you? It means 

the problem is more complex than it initially seemed. How to create synthesizable programs is 

beyond the scope of this article, but it's a subject for future articles. 

Why would you even want to use a language containing nonsynthesizable constructs? There are 

several reasons. We'll look at two. 

First, you may want to represent a system that will later be partitioned into software and hardware 

subsystems. It's easier to design such a system using the full language and later restricting the 

hardware portion of the design to synthesizable constructs. 

A more general reason is the following. FPGA design should always include a testbench, which is 

the environment that provides inputs, including clock(s) and data, and accepts outputs from the 

FPGA. It's the software that describes the world as "seen by" FPGA pins. This world is compiled to 

be simulated but not synthesized. Think about this. The code in the FPGA must be mapped into real 

logical gates in the FPGA, therefore, by definition, it must be synthesizable, since synthesis is the 

process of converting RTL language into gate level language, and hence, into a field programmable 

gate array. But the code "outside of" the FPGA is not going to be put inside of an FPGA. It's going to 

be used by the designer to simulate the environment of the FPGA, while debugging. For this reason, 



it's useful to allow high-level programming constructs that simplify the construction of the testbench. 

If the testbench construction were limited to synthesizable constructs it would force the designer to 

use lower-level abstractions than is necessary. Figure 2 shows the synthesizable and 

nonsynthesizable portions of a design. 

 

Figure 2: Synthesizable and nonsynthesizable portions of design 

This is a very important point, so we repeat it. The Verilog language, designed initially for simulating 

logic, offers powerful high-level constructs that are useful for simulating the "real world" to which the 

FPGA will be connected. The constructs will not be mapped directly into FPGA logic structures or be 

converted into a gate-level netlist. Since only a subset of the Verilog language is synthesizable, that 

testbench design is easier, but FPGA programming, per se, is more difficult. Newer versions of 

Verilog (coming on the market "real soon now") will change the "mix" of synthesizable to 

nonsynthesizable language abstractions, but this problem will probably always be with us to some 

degree. 

C and Verilog 

For the last few years, there has been an effort to extend Verilog by adding C language constructs. 

The effort is now culminating in IEEE standards processes, but the situation is unresolved at this 

time, with the (hopefully remote) possibility that the language will split into two versions. The 

problems are legal, commercial, and conceptual. It's also fair to say that most Verilog programmers 

are unenthusiastic about the process, but the companies involved think that they could sell more 

software if it becomes easier for the army of C programmers to participate in FPGA design; 

therefore, there's real pressure to proceed with the standards process. Because the uncertainties will 

be resolved over the next year or so, we won't focus on this situation here. 

The situation is analogous to the assembly language vs. C programming history. When resources 

are scarce, it pays to design efficiently, therefore assembly language is best. When resources 

become free, the efficiency of the design process dominates, and C language programming is 



preferred. In the FPGA world, resources are not yet free, therefore Verilog is the language of choice. 

This will probably change over time. 

Note that a C interface to Verilog already exists, as shown in Figure 3. There are also variants of 

FPGAs that contain a microprocessor core on the silicon along with the FPGA circuitry. In such 

cases the microprocessors can be programmed using C while the FPGA gates would be 

programmed using Verilog or VHDL. The use of C in the functional testbench code makes sense, 

because it need not be synthesizable. 

 

Figure 3: Testbenchs and C code in debugging 

For those embedded systems programming teams that would like to extend their capabilities into 

FPGA design, I recommend that those with the least understanding of hardware should focus on 

testbench design, while those more capable of hardware design focus on learning how to write 

synthesizable code. 

Optimization 

Now that we have a more complete picture of FPGA design, let's compare the difference in outputs 

before and after placing and routing. 

When the system designed in Verilog is compiled, the output is an RTL netlist. When input to a 

synthesizer, the Verilog is converted into a gate-level netlist, capable of being mapped into FPGA 

hardware (assuming successful synthesis.) Most synthesizers can produce a Verilog language 

description of this gate-level code. The beauty is that this gate-level Verilog can be compiled and 

simulated. Thus, we can debug at the actual gate level. The simulation of the RTL Verilog is 

called functional simulation, while the simulation of the synthesizer Verilog output is called gate-level 

simulation, as shown in Figure 4. 



 

Figure 4: The FPGA programming process 

What's the difference between functional and gate-level simulation? One difference is that, just as C 

compilers can optimize C code, synthesizers can optimize FPGA netlists. In fact, if you specify the 

goal, synthesizers can optimize to meet your goal. The goals are typically area vs. delay. Area 

optimization will attempt to use the fewest number of gates (silicon area) on an FPGA, at the 

expense of execution speed. Delay optimization attempts to maximize the execution speed, even if 

more FPGA area is required. The net result is that the functional code you wrote in Verilog at the 

RTL level may have different implementations, and signals that you used to debug the functional 

code may have been optimized out of existence. That is, they may disappear in the final gate level 

implementation. Thus, even though you've thoroughly tested and simulated the RTL code, you'll 

want to do the same at the gate level. 

Synthesizers typically allow constraints to be specified as part of the optimization process. One such 

constraint is b to prevent the synthesizer from doing whatever it wants to specific elements of the 

design. Another constraint is preserve_hierarchy as an alternative to flatten the design. Because 

hierarchical boundaries can prevent or limit optimization, synthesizers, which flatten the design will 

typically provide more optimal results. 

SDF and back-annotation 

OK, now we're ready for the last major difference between microprocessor and FPGA programming 

processes. Just as there are cases in microprocessor design where speed of execution is critical, 

the same is true for FPGA design. When microprocessor code must be timed, the clock speed and 

number of cycles per instruction can be used to compute execution speed, which will be strongly 

processor dependent. 



When a synthesizer produces gate- level Verilog for an FPGA, it's strongly FPGA dependent; that is, 

the delays associated with vendor-specific FPGA structures are known and can be used to compute 

operation speeds. Thus simulation of gate-level code for a specific FPGA is realistic in this sense. 

But remember, we still have to place and route this gate-level netlist. This operation will add delay 

for longer routes, thus slowing the final execution speed. If your design must meet some real world 

spec, such as a 12MHz USB (48MHz clock) or 480MHz USB2.0 then you must run at this speed, or 

you haven't solved the problem. How can you tell whether the routed code will run fast enough? 

To solve this problem, place and route programs (supplied by the FPGA vendors) will also produce 

Verilog output and will produce SDF files, which are files in standard delay format, that capture the 

delays associated with the placed and routed netlist. Simulators can use this SDF information to 

back annotate the gate- level code, thus allowing simulation of the final FPGA design at its most 

accurate. Because the FPGA elements are well characterized, with typical setup and hold times, the 

simulator can detect failure to meet these specs. On graphical waveforms, the failures typically show 

up in red, while good timing is "in the green" when the desired clock frequency is used. When the 

FPGA runs in the green with the desired clock frequency used, and behaves in the testbench as is 

desired, you have an FPGA design that's ready to be downloaded to hardware for real-world testing. 

Perhaps we should point out here that the three versions of FPGA code simulation, RTL, functional, 

and gate-level will typically all use the same testbench code; that is, there are not three versions of 

the testbench. 

In review 

We've seen that, conceptually, microprocessor programming and FPGA programming follow almost 

identical paths. They're both based on architectural design and are described in terms of C-like high-

level languages, which are compiled or synthesized, possibly in conjunction with third-party library 

objects. The output of this process is linked and loaded in one memory address dimension or placed 

and routed in two dimensional gate arrays, such that these fixed bit patterns can be downloaded to 

correctly designed hardware and, eventually, be made to function in the manner for which the 

architecture was designed. 

When gates were precious entities and tools 100% proprietary, it made ultimate sense to arrange 

these limited gates into universally used objects, such as CPU registers, ALUs, instruction decoders, 

and address decoders. You would then provide a set of instructions that linked and relinked these 

elements, so that, for example, two CPU register outputs could be connected (via buses) to an ALU 

input, then the ALU output connected to a destination register, and then the ALU input connected 

(via buses) to a specific memory address, and the ALU output connected to a different register, and 

so on and so on. It made perfect sense. 

When the scale and, therefore, the economics changes, everything changes. When gates are no 

longer precious but are commodities, the fixed elements approach no longer makes as much sense. 

The monstrous development in languages, tools, I/O devices, standards, and so on will keep CPU 

development and implementation alive for decades, if not centuries, but the economics are now and 



trending more so in the FPGA direction. This has recently been given another economic boost 

relative to ASICs. The cost of repairs in hardware—that is, ASICs—is increasing drastically with 

decreasing line width and increasing gate density, making FPGA technology even more relevant for 

embedded systems designers. Today over a million gates are available, tomorrow 10 million, 

accompanied on a single chip by millions of memory bits. You can make anything you want by 

describing it in a programming language, such as Verilog, and going through the process described 

above. 

FPGA elegance 

One difference in microprocessor and FPGA design is subjective. There is an astonishing elegance 

and "cleanness" of FPGA design vs. microprocessor program design. In design after design, I've 

realized how much time is spent in embedded system programming "getting ready" to do something. 

This involves setting up data in registers or memory locations and setting up pointers in other 

registers, to get some source, do something, and put it somewhere. 

Programmers don't really see this, just as fish probably don't see water, because that's the nature of 

the process. It's less visible with high-level language and more visible with assembly language, but 

it's always there. 

In FPGA this "getting ready" doesn't really occur. Everything is where it belongs and happens all at 

once, in one clock cycle. 

This is not to say that you can't design registers, buses, and ALUs in FPGAs, but you'll find that you 

really don't spend much time "getting ready to do something." I won't push this point, because you 

have to design FPGAs before it hits you over the head. But remember: you read it here first. 

Another significant difference with FPGA design lies in the parallel nature of FPGA processes. 

Instead of a single program counter based "locus of control," an FPGA typically clocks all gates at 

once. Thus you can have many processes occur in parallel, instead of sequentially. This also takes 

some getting used to because it's so different from the way programmers think. 

Why would you want to program an FPGA in the first place? Well, if you're designing accounting 

programs, you don't. But many embedded systems are tightly coupled to the real world, and there 

are many problems that simply happen too quickly to be handled in software. In this case you can let 

your competitor have these problems (which tend to be expensive!) and you can stick with the 

slower, easier (low-profit) problems. Or you can program FPGA solutions. It's not mandatory. It's an 

opportunity. 
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