
FPGA programming step by step

Republished with the permission of Ed Klingman

FPGA programming step by step

Ed Klingman

MARCH 04, 2004

.

FPGAs and microprocessors are more similar than you may think. Here's a primer

on how to program an FPGA and some reasons why you'd want to.

Small processors are, by far, the largest selling class of computers and form the basis of

many embedded systems. The first single-chip microprocessors contained approximately

10,000 gates of logic and 10,000 bits of memory. Today, field programmable gate arrays

http://sdrzone.com/index.php?option=com_content&view=article&id=95:fpga-programming-step-by-step&catid=20&Itemid=572

(FPGAs) provide single chips approaching 10 million gates of logic and 10 million bits of

memory. Figure 1 compares one of these microprocessors with an FPGA.

Figure 1: Comparison of first microprocessors to current FPGAs

Powerful tools exist to program these powerful chips. Unlike microprocessors, not only the

memory bits, but also the logical gates are under your control as the programmer. This

article will show the programming process used for FPGA design.

As an embedded systems programmer, you're aware of the development processes used

with microprocessors. The development process for FPGAs is similar enough that you'll have

no problem understanding it but sufficiently different that you'll have to think differently to

use it well. We'll use the similarities to understand the basics, then discuss the differences

and how to think about them.

Similarities

Table 1 shows the steps involved in designing embedded systems with a microprocessor and

an FPGA. This side-by-side comparison lets you quickly assess the two processes and see

how similar they are.

Table 1: Step-by-step design process for microprocessors and FPGAs

Microprocessor FPGA

Architectural design Architectural design

Choice of language

 (C, JAVA)

Choice of language (Verilog,

VHDL)

Editing programs Editing programs

Compiling programs

 (.DLL, .OBJ)

Compiling programs

 Synthesizing programs

 (.EDIF)

Linking programs

 (.EXE)

Placing and routing programs

 (.VO, .SDF, .TTF)

Loading programs to

ROM

Loading programs to FPGA

Debugging P

programs

Debugging FPGA programs

Documenting

programs

Documenting programs

Delivering programs Delivering programs

Architectural design

The architectural-design phase is surprisingly similar. Although people will argue design

philosophies, it's not unusual to perform a "first cut" at programming in a pseudo-language that can

be translated into and refined as a specific language, say assembly, C++, or JAVA. I describe my

first FPGA architectural design in a pseudo-C language then translate it to Verilog for an FPGA.

Thus the ability to express yourself in C is a good start in learning Verilog. Architectural issues could

fill a book; therefore we'll focus on development issues.

Because you understand editing, compiling, assembling, linking, and loading in microprocessor

programming, you can relate this to editing, compiling, synthesizing, placing, routing, and loading in

FPGA programming.

Editing

Not only is Verilog syntax C-like, but, since it's 100% ASCII, you can use any editor to prepare fpga.v

files. Nothing new here.

Compiling

The process of compiling a program for the microprocessor combines the edited files and builds a

logically correct sequence of bits that are used to control the sequencing of logical gates. These

gates write data onto buses, into latches and registers, out ports, and across channels. The gates

have fixed relationships designed to accomplish fixed functions. The assembly-language instructions

represent these functions. Thus microprocessor compilers either produce assembly-language

programs that are then assembled into bit patterns or directly produce the bits to drive the gates and

fill the registers and the memories.

The analogous operation in FPGA programming is the compilation of Verilog into register transfer

logic (RTL) netlists. As the name implies, data is transferred into registers, subject to some clocking

condition. At this stage FPGA programming departs from microprocessor programming in that an

additional synthesis process is required to produce bits (or intermediate objects that can be

converted to bits) that will control gates and fill registers and memories on an FPGA. This level is

called gate-level logic, since it describes the logical gates of which the system will be composed.

The output format is typically an Electronic Design Interchange Format (EDIF) file.

There's a large difference between compiling and synthesizing, and you have to stretch some to

encompass it. Whereas the compiler produces bits to control fixed-gate patterns (the microprocessor

decoders, registers, arithmetic logic unit, and so on) the synthesizer defines gate patterns described

by the logic of the program. That is, your program logic gets synthesized, or mapped into, logical

gates, not into processor instructions that control multigate structures. This is absolutely amazing,

and good FPGA programmers give thanks every day for living in the rare time in history (post 1990+)

when you can design architectures with words and then synthesize your logic into (mostly silicon)

gates that execute your logic. Not to get carried away, but it's absolutely wonderful.

Linking

Linking was a latecomer to programming—maybe 1950. Previous computers and programs simply

put bits into console switches, and thereby into registers. (Read about the development of linking in

the sidebar.)

The bit-based outputs of the microprocessor compilation process typically don't directly control gates

but must be connected to other bit patterns. This is true because most programs run under the

control of an operating system and must be connected, or linked, to the operating system. In fact,

the location in memory of the actual compiled bits is usually unknown and not determined until

linking and loading is completed. Further, there may be programs existing in a library that must also

be linked to the compiled program before a useful product exists.

The synthesis process, as we have discussed, produces bit patterns, in an intermediate format. We

compile Verilog to RTL netlists, then synthesize Verilog to EDIF, then place and route EDIF to

produce HEX or TTF files that can be loaded into an FPGA. These bit patterns will end up controlling

logic gates and filling memory and registers.

In the same way that C and other programs include objects defined in (possibly third-party) libraries,

FPGA programs can include or import portions of systems from third-party intellectual property, in

the form of FPGA-implementable programs or objects.

Also, in the same way that the linking and loading process of embedded systems design connects

various system objects, subsystems, or super systems like the operating system, including library

objects (and loads or places them into specific memory locations), the place and route function in

FPGA design places the synthesized subsystems into FPGA locations and makes connections

(microprocessor links ~ FPGA routes) between these subsystems, enabling their operation as an

integrated system. The actual linking and loading of compiled bits is essentially a process of fitting,

in one dimension, the bit patterns distributed over a set of available linear memory addresses. The

FPGA place and route process fits, in two dimensions, the bit patterns (logic subsystems) over a two

dimensional array of available logic gates, and routes buses between these logic subsystems as

necessary.

The similarity in the processes is obvious.

History of Linking

Early computers had a "patch board" that looked

somewhat like the telephone patch boards of the 1940s

where "patch cords" were plugged into "sockets" to

make connections between various buses and register

inputs and outputs. The patch boards of the '40s and

'50s evolved into the bit-slice microprogramming of the

1970s, where, again, the focus was on control of logical

gates, and the patch cords were implemented as "wire

wrap" connections. In FPGAs the patch cords are

routing connections between gates. Early FPGAs

contained gates that numbered between the hundreds

and the thousands. The size was not sufficient to

implement systems, but was capable of implementing

the types of circuitry built with Medium Scale Integrated

Circuits (dozens of gates), which implemented the "glue

logic" that held microprocessors and sophisticated

peripheral chips together. Therefore, the first practical

applications of FPGAs consisted of replacing many glue

logic chips with one FPGA. Because these circuits were

already completely described by circuit diagrams, the

first FPGA editors used graphics capture; that is, the

circuit diagrams were redrawn in the editor, and this

was the input information. No high-level languages

were used to program the FPGA in this process, simply

graphics editing and time-based simulation of

waveforms.

Loading

Finally, just as embedded programs are often embedded in physical ROM, flash, or downloaded live,

FPGA programs (compiled, synthesized, placed, and routed) must be embedded in the physical

FPGAs. The actual programming file may be a .HEX or similar. Programmers typically download or

burn the bits from these files into the hardware. If nonvolatile, this is a one-time proposition. If not, it's

a download-at-power-up proposition. Many variations exist with FPGAs as with microprocessor-

based embedded systems, but in the end, in a functioning microprocessor-based product, the bits

compiled, linked, and loaded must "get into" the physical memory to control the gates of the

processor, and in an FPGA-based functioning product, the bits compiled, synthesized, placed, and

routed, must "get into" the FPGA, to implement the gates of the system.

Debugging programs

All experienced programmers know that complex programs, even subprograms, don't run correctly

the first time. When we first see how to solve a problem, we tend to be overjoyed, (it's possible!) and

then underestimate the time required to implement the solution. This is because our powers of

abstraction, based on experience, enable us to see solutions without worrying about every nitty-gritty

detail. But the hard truth is that the physical system in which we're embedding our programs requires

that every nitty-gritty detail must be handled before it will work. No doubt, you have had the

experience of fixing a single bit (or flag) that caused a crashing program to suddenly run correctly.

Hallelujah! It works. I can sleep now.

Anyway, things don't work right out of the gate. We generally have to kick them and see what they

do and where they expire. In embedded systems program development, we typically use debuggers,

simulators, and emulators. These tools enable us to step through the program execution and

observe the effects on flags, register contents, memory locations, and so on, and to try to match

what we expect at a given place and time with what we see, in the simulator or emulator.

Simulation vs. emulation: Debugging in FPGA design is largely based in simulation. You can see

why. Emulation, in the context of embedded microprocessor programs, typically refers to executing

programs on special in-circuit emulation (ICE) hardware designed to 1) run exactly like the target

machine and 2) provide visibility, access, and control of the target machine in powerful ways, with

emulation timing exactly equal to target timing. Thus, the essence of emulation is based on physical

hardware that reproduces the microprocessor's gates while adding gates designed for debugging.

This methodology works because the microprocessor consists of a fixed array of gates,

implementing the CPU, among others.

The FPGA does not have a "fixed" pattern of gates, in the sense of the CPU; in fact, the object of the

FPGA programs is to define a pattern of gates, via the process described herein, that will implement

our design. And our design will differ from every other design. This is why no FPGA emulators exist,

in the sense of in-circuit emulators.

Today the fastest processors cannot be emulated in hardware, since they already run as fast as

possible, and the ICE circuitry adds additional gate levels, thereby slowing the ICE and preventing it

from keeping up with the processor. For this reason, processor designs focus on built-in debugging

support. This approach is somewhat analogous to FPGA design, where it's helpful to build in debug

aids. Because you're used to building debug aids into programs, from PRINT statements on up,

you'll understand the significance of this point, and be able to translate your understanding into the

FPGA realm.

Most microprocessor programming, particularly embedded programming, is based on the

assumption that sophisticated operating systems and peripheral devices are "connected to" the

program, through application interfaces. Thus debugging focuses on the inside of the machine and

doesn't attempt to simulate the operating system or the peripherals but instead works with them.

Testbenches in FPGA: Most FPGA systems are standalone systems connected to the real world,

and functioning in interaction with the real world. Therefore a large part of debugging and test is

concerned with simulating the real world to which the FPGA will attach. In reference to the way logic

circuits were debugged historically, this is called thetestbench and is considered an integral whole—

in other words, it can be compiled as a whole. Simulation typically steps through the operation of the

testbench, which stimulates the FPGA. The simulation process observes the transformations and

translations of signals as they propagate through the FPGA from the input pins and provides

responses that eventually reach an output pin.

Because there will likely be tens or hundreds of thousands of gates, you obviously don't watch all of

them, but the most meaningful ones in the area of interest. For example, a FIFO buffer may be 48-

bits wide and thousands of words long, but the gate output that most interests you at the moment

may be the Buffer_Full signal, so this would be displayed on the simulation screen, along with other

signals of interest. This process somewhat resembles focusing on flags or semaphores in

microprocessor programming. You can group multiple signals. For example, eight wires may be

given a name,Data_In_Bus, and the numeric values appearing on the bus may be displayed, as

opposed to showing all eight lines constantly changing. State variables can be given ASCII names

and displayed. In the same sense that you may want to focus on program execution within a

subroutine, you may want to observe only the signal activity in a subsystem. Once you learn the

tools, it becomes quite natural to debug an FPGA subsystem you've designed.

Bottom line: FPGA debugging is done by software simulation and by using actual hardware. Any

debug use of the actual hardware must be designed by you.

Netlist and Top ~ Main: Although it's not really a part of the process, it's worthwhile to understand

that the output of the FPGA design process is a netlist or list of nets or wires that connect gate

outputs to other gate inputs. Further, there is a top level from which everything descends. Think of

the top as the Main point in a microprocessor program where the program starts. Although there

may be 50 or more modules that are created independently in an FPGA design, when the process is

finished, all will be linked in the netlist. Any module not in the list will have no effect. This is

analogous to a subroutine that is never called. If there is no connection to a module, the module

can't do anything.

Documenting programs:

I can't think of any significant differences between good documentation practice in microprocessor-

based embedded systems and FPGA-based embedded systems programming. The contents will

obviously differ somewhat, but the practice and procedures are the same.

Delivering product:

FPGAs are surprisingly similar to microprocessors in the actual delivery of working hardware and

software.

The microprocessor hardware, boards, power supplies, connections, must be correctly designed,

and the software must be burned in or downloaded as described above.

The FPGA hardware, boards, power supplies, connections, etc., must be correctly designed, and the

software must be burnt in or downloaded as described above.

If the hardware is correct, the software can evolve. This allows bug fixes and feature addition. This is

true for microprocessors and FPGAs. The Verilog or VHDL hardware description language (HDL)—

each is a high-level design language—provides fast time-to-market using FPGAs. The HDL system

allows design, debug, and verify—all within the same environment. As with microprocessor design,

FPGA design can be command-line driven or IDE-based.

Differences

Most of what we've just discussed has focused on the similarities between embedded

microprocessor programming and FPGA programming. We now look at some significant differences.

Unsynthesizable:

Probably the biggest surprise for experienced embedded programmers is that programs that are

functionally good, that run, and can be simulated, and produce correct results, may not be

synthesizable. What does this mean? It means that you can write "good" functional programs that

are impossible to convert into a netlist that can be mapped into an FPGA. Why is this? Primarily

because Verilog is a "superset" of synthesizable syntax. Historically, Verilog was designed as a

simulation language for simulating logic systems. It was only later that synthesis technology was

able to actually convert the RTL output of the simulation compiler into netlists based on gate-level

structures actually found in FPGAs. It is therefore understandable that the full simulation language,

designed before synthesis tools, is not fully synthesizable. What does this mean to you? It means

the problem is more complex than it initially seemed. How to create synthesizable programs is

beyond the scope of this article, but it's a subject for future articles.

Why would you even want to use a language containing nonsynthesizable constructs? There are

several reasons. We'll look at two.

First, you may want to represent a system that will later be partitioned into software and hardware

subsystems. It's easier to design such a system using the full language and later restricting the

hardware portion of the design to synthesizable constructs.

A more general reason is the following. FPGA design should always include a testbench, which is

the environment that provides inputs, including clock(s) and data, and accepts outputs from the

FPGA. It's the software that describes the world as "seen by" FPGA pins. This world is compiled to

be simulated but not synthesized. Think about this. The code in the FPGA must be mapped into real

logical gates in the FPGA, therefore, by definition, it must be synthesizable, since synthesis is the

process of converting RTL language into gate level language, and hence, into a field programmable

gate array. But the code "outside of" the FPGA is not going to be put inside of an FPGA. It's going to

be used by the designer to simulate the environment of the FPGA, while debugging. For this reason,

it's useful to allow high-level programming constructs that simplify the construction of the testbench.

If the testbench construction were limited to synthesizable constructs it would force the designer to

use lower-level abstractions than is necessary. Figure 2 shows the synthesizable and

nonsynthesizable portions of a design.

Figure 2: Synthesizable and nonsynthesizable portions of design

This is a very important point, so we repeat it. The Verilog language, designed initially for simulating

logic, offers powerful high-level constructs that are useful for simulating the "real world" to which the

FPGA will be connected. The constructs will not be mapped directly into FPGA logic structures or be

converted into a gate-level netlist. Since only a subset of the Verilog language is synthesizable, that

testbench design is easier, but FPGA programming, per se, is more difficult. Newer versions of

Verilog (coming on the market "real soon now") will change the "mix" of synthesizable to

nonsynthesizable language abstractions, but this problem will probably always be with us to some

degree.

C and Verilog

For the last few years, there has been an effort to extend Verilog by adding C language constructs.

The effort is now culminating in IEEE standards processes, but the situation is unresolved at this

time, with the (hopefully remote) possibility that the language will split into two versions. The

problems are legal, commercial, and conceptual. It's also fair to say that most Verilog programmers

are unenthusiastic about the process, but the companies involved think that they could sell more

software if it becomes easier for the army of C programmers to participate in FPGA design;

therefore, there's real pressure to proceed with the standards process. Because the uncertainties will

be resolved over the next year or so, we won't focus on this situation here.

The situation is analogous to the assembly language vs. C programming history. When resources

are scarce, it pays to design efficiently, therefore assembly language is best. When resources

become free, the efficiency of the design process dominates, and C language programming is

preferred. In the FPGA world, resources are not yet free, therefore Verilog is the language of choice.

This will probably change over time.

Note that a C interface to Verilog already exists, as shown in Figure 3. There are also variants of

FPGAs that contain a microprocessor core on the silicon along with the FPGA circuitry. In such

cases the microprocessors can be programmed using C while the FPGA gates would be

programmed using Verilog or VHDL. The use of C in the functional testbench code makes sense,

because it need not be synthesizable.

Figure 3: Testbenchs and C code in debugging

For those embedded systems programming teams that would like to extend their capabilities into

FPGA design, I recommend that those with the least understanding of hardware should focus on

testbench design, while those more capable of hardware design focus on learning how to write

synthesizable code.

Optimization

Now that we have a more complete picture of FPGA design, let's compare the difference in outputs

before and after placing and routing.

When the system designed in Verilog is compiled, the output is an RTL netlist. When input to a

synthesizer, the Verilog is converted into a gate-level netlist, capable of being mapped into FPGA

hardware (assuming successful synthesis.) Most synthesizers can produce a Verilog language

description of this gate-level code. The beauty is that this gate-level Verilog can be compiled and

simulated. Thus, we can debug at the actual gate level. The simulation of the RTL Verilog is

called functional simulation, while the simulation of the synthesizer Verilog output is called gate-level

simulation, as shown in Figure 4.

Figure 4: The FPGA programming process

What's the difference between functional and gate-level simulation? One difference is that, just as C

compilers can optimize C code, synthesizers can optimize FPGA netlists. In fact, if you specify the

goal, synthesizers can optimize to meet your goal. The goals are typically area vs. delay. Area

optimization will attempt to use the fewest number of gates (silicon area) on an FPGA, at the

expense of execution speed. Delay optimization attempts to maximize the execution speed, even if

more FPGA area is required. The net result is that the functional code you wrote in Verilog at the

RTL level may have different implementations, and signals that you used to debug the functional

code may have been optimized out of existence. That is, they may disappear in the final gate level

implementation. Thus, even though you've thoroughly tested and simulated the RTL code, you'll

want to do the same at the gate level.

Synthesizers typically allow constraints to be specified as part of the optimization process. One such

constraint is b to prevent the synthesizer from doing whatever it wants to specific elements of the

design. Another constraint is preserve_hierarchy as an alternative to flatten the design. Because

hierarchical boundaries can prevent or limit optimization, synthesizers, which flatten the design will

typically provide more optimal results.

SDF and back-annotation

OK, now we're ready for the last major difference between microprocessor and FPGA programming

processes. Just as there are cases in microprocessor design where speed of execution is critical,

the same is true for FPGA design. When microprocessor code must be timed, the clock speed and

number of cycles per instruction can be used to compute execution speed, which will be strongly

processor dependent.

When a synthesizer produces gate- level Verilog for an FPGA, it's strongly FPGA dependent; that is,

the delays associated with vendor-specific FPGA structures are known and can be used to compute

operation speeds. Thus simulation of gate-level code for a specific FPGA is realistic in this sense.

But remember, we still have to place and route this gate-level netlist. This operation will add delay

for longer routes, thus slowing the final execution speed. If your design must meet some real world

spec, such as a 12MHz USB (48MHz clock) or 480MHz USB2.0 then you must run at this speed, or

you haven't solved the problem. How can you tell whether the routed code will run fast enough?

To solve this problem, place and route programs (supplied by the FPGA vendors) will also produce

Verilog output and will produce SDF files, which are files in standard delay format, that capture the

delays associated with the placed and routed netlist. Simulators can use this SDF information to

back annotate the gate- level code, thus allowing simulation of the final FPGA design at its most

accurate. Because the FPGA elements are well characterized, with typical setup and hold times, the

simulator can detect failure to meet these specs. On graphical waveforms, the failures typically show

up in red, while good timing is "in the green" when the desired clock frequency is used. When the

FPGA runs in the green with the desired clock frequency used, and behaves in the testbench as is

desired, you have an FPGA design that's ready to be downloaded to hardware for real-world testing.

Perhaps we should point out here that the three versions of FPGA code simulation, RTL, functional,

and gate-level will typically all use the same testbench code; that is, there are not three versions of

the testbench.

In review

We've seen that, conceptually, microprocessor programming and FPGA programming follow almost

identical paths. They're both based on architectural design and are described in terms of C-like high-

level languages, which are compiled or synthesized, possibly in conjunction with third-party library

objects. The output of this process is linked and loaded in one memory address dimension or placed

and routed in two dimensional gate arrays, such that these fixed bit patterns can be downloaded to

correctly designed hardware and, eventually, be made to function in the manner for which the

architecture was designed.

When gates were precious entities and tools 100% proprietary, it made ultimate sense to arrange

these limited gates into universally used objects, such as CPU registers, ALUs, instruction decoders,

and address decoders. You would then provide a set of instructions that linked and relinked these

elements, so that, for example, two CPU register outputs could be connected (via buses) to an ALU

input, then the ALU output connected to a destination register, and then the ALU input connected

(via buses) to a specific memory address, and the ALU output connected to a different register, and

so on and so on. It made perfect sense.

When the scale and, therefore, the economics changes, everything changes. When gates are no

longer precious but are commodities, the fixed elements approach no longer makes as much sense.

The monstrous development in languages, tools, I/O devices, standards, and so on will keep CPU

development and implementation alive for decades, if not centuries, but the economics are now and

trending more so in the FPGA direction. This has recently been given another economic boost

relative to ASICs. The cost of repairs in hardware—that is, ASICs—is increasing drastically with

decreasing line width and increasing gate density, making FPGA technology even more relevant for

embedded systems designers. Today over a million gates are available, tomorrow 10 million,

accompanied on a single chip by millions of memory bits. You can make anything you want by

describing it in a programming language, such as Verilog, and going through the process described

above.

FPGA elegance

One difference in microprocessor and FPGA design is subjective. There is an astonishing elegance

and "cleanness" of FPGA design vs. microprocessor program design. In design after design, I've

realized how much time is spent in embedded system programming "getting ready" to do something.

This involves setting up data in registers or memory locations and setting up pointers in other

registers, to get some source, do something, and put it somewhere.

Programmers don't really see this, just as fish probably don't see water, because that's the nature of

the process. It's less visible with high-level language and more visible with assembly language, but

it's always there.

In FPGA this "getting ready" doesn't really occur. Everything is where it belongs and happens all at

once, in one clock cycle.

This is not to say that you can't design registers, buses, and ALUs in FPGAs, but you'll find that you

really don't spend much time "getting ready to do something." I won't push this point, because you

have to design FPGAs before it hits you over the head. But remember: you read it here first.

Another significant difference with FPGA design lies in the parallel nature of FPGA processes.

Instead of a single program counter based "locus of control," an FPGA typically clocks all gates at

once. Thus you can have many processes occur in parallel, instead of sequentially. This also takes

some getting used to because it's so different from the way programmers think.

Why would you want to program an FPGA in the first place? Well, if you're designing accounting

programs, you don't. But many embedded systems are tightly coupled to the real world, and there

are many problems that simply happen too quickly to be handled in software. In this case you can let

your competitor have these problems (which tend to be expensive!) and you can stick with the

slower, easier (low-profit) problems. Or you can program FPGA solutions. It's not mandatory. It's an

opportunity.

Ed Klingman worked as a research physicist at NASA for seven years, then founded Cybernetic

Micro Systems, Inc, now celebrating it's 25th anniversary. He is author of the Prentice-Hall

textbooks Microprocessor Systems Design, Vol I. and II. and numerous technical papers, and has

been awarded 20 U.S. patents. You can reach him atklingman@geneman.com.

mailto:klingman@geneman.com

